Neuroimage. 2025 Apr 17:121230. doi: 10.1016/j.neuroimage.2025.121230. Online ahead of print.
ABSTRACT
This study investigates the role of the premotor area (PMA) in motor planning during decision-making, focusing on differences between brain hemispheres. A cross-sectional assessment was conducted involving seventeen right-handed participants who performed tasks requiring responses with either hand to visual stimuli. Motion capture, EEG and EMG signals were collected to analyze corticomuscular coherence (CMC) in the beta and gamma bands across four motor-related cortical areas. Findings revealed significant beta-band CMC between anterior deltoids and contralateral PMA before stimulus onset in simple reaction tasks. Moreover, significant beta-band CMC was observed between the left anterior deltoid and the right PMA during the motor planning phase, prior to the onset of muscle contraction, corresponding with shorter planning times. This connectivity pattern was consistent across both simple and complex reaction tasks, indicating that the PMA plays a crucial role during decision-making. Notably, motor planning for the right hand did not exhibit the same connectivity pattern, suggesting more complex cognitive processes. These results emphasize the distinct functional roles of the left and right hemispheres in motor planning and underscore the importance of CMC in understanding the neural mechanisms underlying motor control. This study contributes to the theoretical framework of motor decision-making and offers insights for future research on motor planning and rehabilitation strategies.
PMID:40252879 | DOI:10.1016/j.neuroimage.2025.121230