Antioxidant and Anti-Senescence Polyvinyl Alcohol-Gallic Acid Supramolecular Hydrogels for Stem Cell Culture

Scritto il 17/04/2025
da Yiduo Zhou

Adv Healthc Mater. 2025 Apr 17:e2402882. doi: 10.1002/adhm.202402882. Online ahead of print.

ABSTRACT

Replicative senescence presents a significant challenge in mesenchymal stem cell (MSC) expansion due to high reactive oxygen species (ROS) levels generated during culture. Elevated ROS levels lead to oxidative stress, cellular damage, and senescence, limiting the biomedical applications of MSCs. In this study, a supramolecular thermo-reversible hydrogel composed of the natural polyphenolic compound gallic acid (GA) and polyvinyl alcohol (PVA) was designed to scavenge ROS and mitigate MSC senescence. The PVA-GA hydrogel, stabilized by strong hydrogen bonding forces, exhibited an elastic modulus comparable to that of human soft tissue and facilitated the sustained release of GA over 14 days. It enhanced MSC survival, protected against oxidative stress, reduced intracellular ROS levels, diminished mitochondrial damage, and decreased cellular senescence. The hydrogel maintained the multilineage differentiation potential and typical phenotype of MSCs. Additionally, it preserved vascular endothelial growth factor (VEGF) secretion from MSCs under oxidative stress and enhanced their pro-angiogenic effect. The conditioned medium derived from MSCs in the hydrogel group promoted migration and tube formation of human umbilical vein endothelial cells (HUVECs). These findings suggest that the PVA-GA hydrogel holds significant promise for the biomedical applications of MSCs, potentially addressing the challenges posed by oxidative stress and cellular senescence.

PMID:40243864 | DOI:10.1002/adhm.202402882